Предоставлено Вамmsd logo
This site is not intended for use in the Russian Federation

Обзор гемостаза (Overview of Hemostasis)

Авторы:Michael B. Streiff, MD, Johns Hopkins University School of Medicine
Проверено/пересмотрено окт. 2023
Вид

Гемостаз представляет собой процесс остановки кровотечения из поврежденной сосудистой стенки и требует взаимодействия

  • Сосудистые факторы

  • Тромбоциты

  • Плазменные факторы свертывания

Регуляторные механизмы уравновешивают процесс формирования тромбов. Нарушения системы гемостаза могут привести к повышенной кровоточивости или тромбозам.

Сосудистые факторы гемостаза

Сосудистые факторы снижают кровопотерю, обусловленную травмой, с помощью механизма локальной вазоконстрикции (немедленная реакция на повреждение) и компрессии поврежденных кровеносных сосудов путем экстравазации крови в окружающие ткани. При повреждении сосудистой стенки происходят адгезия и агрегация тромбоцитов и генерация фибриновых полимеров из фибриногена; взаимодействие тромбоцитов с фибрином формирует тромб.

Тромбоциты

Ток крови, благодаря предотвращению агрегации тромбоцитов и расширению интактных кровеносных сосудов, сохраняется с помощью различных механизмов, к которым относятся высвобождаемые эндотелиальными клетками простациклин и оксид азота. Производство этих медиаторов прекращается при повреждении эндотелия сосудистой стенки. В этих условиях происходят адгезия тромбоцитов к поврежденной интиме сосудистой стенки и формирование тромбоцитарных агрегатов. Начальная адгезия тромбоцитов осуществляется посредством участия мультимеров фактора фон Виллебранда (ФВ), который был предварительно секретирован и связан стимулированными эндотелиальными клетками. ФВ взаимодействует с рецепторами на поверхности тромбоцитарной мембраны (гликопротеин Ib/IX). Тромбоциты, которые зацепились за стенки сосуда, подвергаются активации. При этом тромбоциты высвобождают медиаторы агрегации, включая аденозиндифосфат (АДФ), из накопительных вакуолей.

Другие биохимические изменения, происходящие в результате активации тромбоцитов, включают

  • Гидролиз мембранных фосфолипидов

  • Ингибирование аденилатциклазы

  • Мобилизацию внутриклеточного кальция

  • Фосфорилирование внутриклеточных белков

Арахидоновая кислота преобразуется в тромбоксан A2; эта реакция требует участия циклооксигеназы тромбоцитов и необратимо ингибируется аспирином и обратимо многими НПЗП (нестероидными противовоспалительными препаратами).

АДФ, тромбоксан A2 и другие медиаторы провоцируют агрегацию дополнительных тромбоцитов к поврежденному эндотелию и активируют их. Тромбоцитарные рецепторы АДФ включают рецептор P2Y12, который посылает сигналы для подавления аденилатциклазы, уменьшает уровень циклического аденозин монофосфата (цАМФ) и способствует активации рецептора гликопротеина IIb/IIIa (образующегося на поверхности мембраны активированного тромбоцита из гликопротеинов IIb и IIIa). Фибриноген связывается с гликопротеиновым комплексом IIb/IIIa расположенных рядом тромбоцитов и соединяет их друг с другом.

Сборка и активация коагуляционных комплексов и образование тромбина проходят на поверхности тромбоцитов. Тромбин превращает фибриноген в мономеры фибрина, а мономеры фибрина полимеризуются в полимеры фибрина, которые соединяют агрегированные тромбоциты в тромбоцитарно-фибриновые гемостатические пробки.

Плазменные факторы свертывания

Факторы свертывания крови воздействуют друг на друга на поверхности тромбоцитов и эндотелиальных клеток с целью производства тромбина, который превращает фибриноген в фибрин. Фибрин укрепляет тромб за счет формирования гемостатической пробки и ее закрепления.

При внутреннем пути свертывания фактор XII, высокомолекулярный кининоген, прекаликреин и активированный фактор XI (фактор XIa) взаимодействуют для производства активированного фактора IХa из фактора IX. Фактор IХa затем взаимодействует с фактором VIIIа и прокоагулянтными фосфолипидами (присутствуют на поверхности активированных тромбоцитов, эндотелиальных клеток и клеток тканей для создания комплекса, активирующего фактор Х.

При внешнем путифактор VIIа и тканевой фактор (ТФ) непосредственно активируют фактор Х (и, возможно, также фактор IX – см. рисунок Пути свертывания крови и таблицу Компоненты реакции свертывания крови).

Факторы свертывания крови вырабатываются в печени, за исключением фактора VIII, который синтезируется в синусоидальных клетках печени и эндотелиальных клетках вне печени. Экспрессия тканевого фактора обычно ограничена периваскулярными клетками, поэтому активация внешнего пути происходит только в случае повреждения стенки сосуда.

Метаболические механизмы свертывания крови

Таблица
Таблица

Активация внутреннего или внешнего пути стимулирует общий путь свертывания, что приводит к образованию фибринового сгустка. Общий путь активации состоит из трех шагов:

  1. Протромбиназа вырабатывается на поверхности активированных тромбоцитов, эндотелиальных и других тканевых клеток. Протромбиназа представляет собой комплекс из фермента, фактора Ха и кофактора, фактора Va на поверхности прокоагулянтного фосфолипида.

  2. Протромбиназа расщепляет протромбин до тромбина.

  3. Тромбин стимулирует создание мономеров и полимеров фибрина из фибриногена и активирует растворимые факторы V, VIII и XI. Тромбин также активирует фактор XIII – фермент, катализирующий образование более сильных ковалентных связей между мономерами фибрина.

Ионы кальция требуются для большинства реакций образования тромбина и, соответственно, кальций-хелатирующие агенты (например, цитрат, этилендиаминтетрауксусная кислота) используются в качестве антикоагулянтов в условиях in vitro. Витамин К-зависимые факторы свертывания крови (факторы II, VII, IX и X) в норме связываются с фосфолипидами с помощью кальциевых мостиков для участия в процессе свертывания крови. Реакции коагуляции не могут протекать должным образом при отсутствии витамина К. Витамин К-зависимые регуляторные белки свертывания включают протеины С и S.

Хотя пути свертывания крови достаточно полезны для понимания механизмов и лабораторной оценки коагуляционных нарушений, в естественных условиях в процессе коагуляции не участвуют фактор XII, прокалликреин или высокомолекулярный кининоген. У людей с наследственным дефицитом этих факторов отсутствуют нарушения гомеостаза. У людей с наследственным дефицитом фактора XI может наблюдаться легкое или умеренное нарушение свертываемости крови. In vitro растворимый фактор XI может быть активирован тромбином. Однако между уровнем плазматического фактора XI и вероятностью или степенью кровотечения устойчивая связь отсутствует. Растворимый фактор IX может активироваться in vitro как фактором XIa, так и фактором VIIa/комплексами тканевого фактора.

В естественных условиях инициирование внешнего пути возникает, когда повреждение кровеносных сосудов приводит кровь к контакту с тканевым фактором на мембранах клеток в пределах и в окружении сосудистой стенки. Контакт с тканевым фактором запускает образование комплекса фактор VIIa/тканевой фактор, который активирует фактор X (и, возможно, фактор IX, внутренний фактор). Фактор IXa в комбинации со своим кофактором, фактором VIII на поверхности фосфолипидной мембраны также генерирует фактор Ха. Активация фактора X комплексами фактора IXa/VIIIa необходима для нормального гемостаза. Необходимость этого процесса для факторов VIII и IX объясняет, почему при гемофилии типа А (дефицит фактора VIII или фактора IX) или типа В (дефицит фактора IX) возникает кровотечение. Активация фактора X комплексами фактор VIIa/тканевой фактор на внешнем пути свертывания не генерирует достаточное количество тромбина (и фибрина) для предотвращения кровотечения у пациентов с тяжелыми формами гемофилии А или В.

Регуляция процесса коагуляции

Ряд ингибиторных механизмов предотвращает неконтролируемую активацию реакций коагуляции, которая может привести к локальному тромбозу или диссеминированному внутрисосудистому свертыванию. Эти механизмы включают:

  • Инактивацию факторов свертывания

  • Фибринолиз

  • Печеночный клиренс активированных факторов свертывания

Инактивация факторов свертывания

Ингибиторы плазменных протеаз (антитромбин, ингибитор тканевого фактора, α2-макроглобулин, и кофактор гепарина II) инактивируют ферменты коагуляции. Антитромбин ингибирует тромбин, фактор Xa, фактор XIa и фактор IXa.

Два витамин К-зависимых протеина, протеин С и свободный протеин S образуют комплекс, который путем протеолиза инактивирует факторы VIIIa и Va. Тромбин, соединяясь с рецептором на эндотелиальных клетках (тромбомодулин [CD141]) активирует протеин С. Активированный протеин С совместно со свободным протеином S и рецепторами протеина С эндотелиальных клеток протеолизует и инактивирует факторы VIIIa и Va.

Кроме присутствующих в норме инактиваторов, существует целый ряд антикоагулянтов, которые потенцируют инактивацию факторов свертывания (см. рисунок Антикоагулянты и сферы их действия).

Гепарин усиливает активность антитромбина. Нефракционированный гепарин (НФГ) и низкомолекулярные гепарины (НМГ) повышают активность антитромбина к инактивации факторов IIa (тромбин) и Xa. НМГ включают эноксапарин, дальтепарин и тинзапарин.

Варфарин является антагонистом витамина К. Он ингибирует восстановление активной формы витамина К и, следовательно, ингибирует образование функциональных форм витамин К-зависимых факторов свертывания II, VII, IX и X (так же, как и протеины С и S).

Фондапаринукс представляет собой небольшие синтетические молекулы, содержащие основную пентасахаридную часть структуры гепарина; он усиливает инактивацию фактора Ха (но не фактора IIа [тромбина]) антитромбином.

Парентеральные прямые ингибиторы тромбина включают в себя аргатробан и бивалирудин.

Более новые пероральные антикоагулянты прямого действия включают ингибитор тромбина (дабигатран) и ингибитор фактора Ха (апиксабан, ривароксабан, эдоксабан). Применение этих препаратов, включая описание рисков, выгоды и нейтрализующих средств, обсуждается в разделах Руководства, касающихся фибрилляции предсердий, тромбоза глубоких вен (ТГВ) и тромбоэмболии легочной артерии (ТЭЛА).

Антикоагулянты и их точки воздействия

НМГ = низкомолекулярный гепарин; ТФ = тканевой фактор; НФГ = нефракционированный гепарин.

Фибринолиз

В норме процессы отложения фибрина и фибринолиз сбалансированны, что дает возможность временного поддержания и последующего удаления гемостатического сгустка при восстановлении поврежденной сосудистой стенки. Фибринолитическая система растворяет фибрин при помощи плазмина, являющегося протеолитическим ферментом. Фибринолиз активируется посредством активаторов плазминогена, продуцируемых эндотелиальными клетками сосудов. Активаторы плазминогена и плазминоген (в плазме) связываются с фибрином, и активаторы плазминогена расщепляют плазминоген до плазмина (см. рисунок Фибринолитический путь). Затем плазмин образует растворимые продукты распада фибрина, которые поступают в циркуляцию и метаболизируется в печени.

Фибринолитический путь

Отложение фибрина и фибринолиз должны быть сбалансированы во время восстановдения поврежденной стенки кровеносных сосудов. Поврежденные эндотелиальные клетки высвобождают активаторы плазминогена (тканевой активатор плазминогена, урокиназа), активирующие фибринолиз. Активаторы плазминогена расщепляют плазминоген в плазмин, который растворяет сгустки. Фибринолиз контролируется с помощью ингибиторов активатора плазминогена (PAI, например, PAI-1) и ингибиторов плазмина (например, альфа2-антиплазмина).

Существует несколько активаторов плазминогена:

  • Тканевой активатор плазминогена (ТАП), производное эндотелиальных клеток, является слабым активатором плазминогена, когда находится в свободной форме в растворе, но его эффективность возрастает при взаимодействии с фибрином в непосредственной близости от плазминогена.

  • Урокиназа существует в одноцепочной и двухцепочной формах с различными функциональными возможностями. Одноцепочная урокиназа не способна активировать свободный плазминоген, но, как и ТАП, способна активировать плазминоген при взаимодействии с фибрином. Микроконцентрации плазмина расщепляют одноцепочечную урокиназу на двухцепочечную, которая активирует плазминоген в растворе, так же как и плазминоген, связанный с фибрином. Эпителиальные клетки в экскреторных протоках (например, почечные канальцы, протоки молочной железы) высвобождают урокиназу, которая в этих каналах является физиологическим активатором фибринолиза.

  • Стрептокиназа, представляющая бактериальный продукт, не присутствующий в организме человека, является другим потенциальным активатором плазминогена.

Стрептокиназа, урокиназа и рекомбинантный ТАП (альтеплаза) используются в терапевтической практике с целью индукции фибринолиза у больных с острыми тромбозом.

Регулирование фибринолиза

Фибринолиз регулируется ингибиторами активатора плазминогена (ИАП) и ингибиторами плазмина, которые замедляют фибринолиз. ИАП-1, являясь наиболее важным тканевым активатором плазминогена (tPA), инактивирует tPA и урокиназу и высвобождается из эндотелиальных клеток сосудов и активированных тромбоцитов.. Основным ингибитором плазмина является альфа-2-антиплазмин, который быстро инактивирует любой свободный плазмин, высвобождаемый из сгустка. Часть альфа2-антиплазмина также связывается с полимерами фибрина под действием фактора XIIIa во время образования сгустка. Это сшивание может предотвратить чрезмерную активность плазмина внутри сгустков.

Тканевой активатор плазминогена и урокиназа быстро выводятся печенью, что является еще одним механизмом предотвращения чрезмерного фибринолиза.

quizzes_lightbulb_red
Test your KnowledgeTake a Quiz!
Загрузите приложение "Справочник MSD"! ANDROID iOS
Загрузите приложение "Справочник MSD"! ANDROID iOS
Загрузите приложение "Справочник MSD"! ANDROID iOS