Staphylococcal Infections

ByLarry M. Bush, MD, FACP, Charles E. Schmidt College of Medicine, Florida Atlantic University;
Maria T. Vazquez-Pertejo, MD, FACP, Wellington Regional Medical Center
Reviewed/Revised May 2023
View Patient Education

Staphylococci are gram-positive aerobic organisms. Staphylococcus aureus is the most pathogenic; it typically causes skin infections and sometimes pneumonia, endocarditis, and osteomyelitis. It commonly leads to abscess formation. Some strains elaborate toxins that cause gastroenteritis, scalded skin syndrome, and toxic shock syndrome. Diagnosis is by Gram stain and culture. Treatment is usually with penicillinase-resistant beta-lactams, but because antibiotic resistance is common, vancomycin or other newer antibiotics may be required.

The ability to clot blood by producing coagulase distinguishes the virulent pathogen, Staphylococcus aureus, from the less virulent coagulase-negative staphylococcal species. Coagulase-positive S. aureus is among the most ubiquitous and dangerous human pathogens, for both its virulence and its ability to develop antibiotic resistance.

Coagulase-negative species such as S. epidermidis are increasingly associated with hospital-acquired infections; S. saprophyticus causes urinary infections. S. lugdunensis, a coagulase-negative species, can cause invasive disease with virulence similar to that of S. aureus. Unlike most coagulase-negative staphylococcal species, S. lugdunensis often remains sensitive to penicillinase-resistant beta-lactam antibiotics (ie, methicillin-sensitive).

A carrier state is common. Pathogenic staphylococci are ubiquitous. They are carried, usually transiently, in the anterior nares of about 30% of healthy adults and on the skin of about 20%; from these locations, staphylococci can cause infection in the host and others. Carriage rates are higher in hospitalized patients and hospital personnel. S. aureus infections are more prevalent in carriers than in noncarriers and are usually caused by the colonizing strain.

Risk factors for staphylococcal infections

People who are predisposed to staphylococcal infections include

  • Neonates and breastfeeding mothers

  • Patients with influenza, chronic bronchopulmonary disorders (eg, cystic fibrosis, emphysema), leukemia, tumors, chronic skin disorders, or diabetes mellitus

  • Patients with a transplant, an implanted prosthesis, other foreign bodies, or an indwelling intravascular plastic catheter

  • Patients receiving adrenal steroids, irradiation, immunosuppressants, or antitumor chemotherapy

  • Injection drug users

  • Patients who have chronic kidney disease and are being treated with dialysis

  • Patients with surgical incisions, open wounds, or burns

Predisposed patients may acquire antibiotic-resistant staphylococci from other patients, health care personnel, or inanimate objects in health care settings. Transmission via the hands of personnel is the most common means of spread, but airborne spread also can occur.

Diseases Caused by Staphylococci

Staphylococci cause disease by

  • Direct tissue invasion

  • Sometimes exotoxin production

Direct tissue invasion is the most common mechanism for staphylococcal disease, including the following:

Multiple exotoxins are sometimes produced by staphylococci. Some have local effects; others trigger cytokine release from certain T cells, causing serious systemic effects (eg, skin lesions, shock, organ failure, death). Panton-Valentine leukocidin (PVL) is a toxin produced by strains infected with a certain bacteriophage. PVL is typically present in strains of community-associated methicillin-resistant S. aureus (CA-MRSA) and has been thought to mediate the ability to necrotize; however, this effect has not been verified.

Toxin-mediated staphylococcal diseases include the following:

The infections and disorders listed below are further discussed elsewhere in THE MANUAL.

Staphylococcal bacteremia

S. aureus bacteremia, which frequently causes metastatic foci of infection, may occur with any localized S. aureus infection but is particularly common with infection related to intravascular catheters or other foreign bodies. It may also occur without any obvious primary site.

S. epidermidis and other coagulase-negative staphylococci increasingly cause hospital-acquired bacteremia associated with intravascular catheters and other foreign bodies because they can form biofilms on these materials.

Staphylococcal bacteremia is an important cause of morbidity (especially prolongation of hospitalization) and mortality in debilitated patients.

Staphylococcal skin infections

Skin infections are the most common form of staphylococcal disease. Superficial infections may be diffuse, with vesicular pustules and crusting (impetigo) or sometimes cellulitis, or focal with nodular abscesses (furuncles and carbuncles). Deeper cutaneous abscesses are common. Severe necrotizing skin infections may occur.

Some Staphylococcal Skin Infections
Impetigo
Impetigo

In impetigo, clusters of vesicopustular or bullous lesions form, rupture, and develop a honey-colored crust.

Image courtesy of Thomas Habif, MD.

Nonbullous Impetigo (Infant)
Nonbullous Impetigo (Infant)

This photo shows clusters of vesicles and pustules with developing honey-colored crust on the nose.

DR P. MARAZZI/SCIENCE PHOTO LIBRARY

Furuncle
Furuncle

Furuncles (boils) are tender nodules or pustules that involve a hair follicle and are caused by staphylococcal infection.

... read more

Image provided by Thomas Habif, MD.

Staphylococci are commonly implicated in wound and burn infections, postoperative incision infections, and mastitis or breast abscess in breastfeeding mothers.

Staphylococcal neonatal infections

Neonatal infections usually appear within 4 weeks after birth and include

Staphylococcal pneumonia

Pneumonia that occurs in a community setting is not common but may develop in patients with one or more of the following characteristics:

  • Influenza

  • Chronic bronchopulmonary or other high-risk diseases

  • Corticosteroid or immunosuppressant therapy

  • Indwelling IV catheters for home parenteral therapy or hemodialysis

  • Injection drug use

Staphylococcal pneumonia may be a primary infection or result from hematogenous spread of S. aureus infection elsewhere in the body (eg, IV catheter infection, endocarditis, soft-tissue infection) or from injection drug use. However, S. aureus is a common cause of hospital-acquired pneumonia, including ventilator-associated pneumonia.

Staphylococcal pneumonia is occasionally characterized by formation of lung abscesses followed by rapid development of pneumatoceles and empyema. CA-MRSA often causes severe necrotizing pneumonia.

Staphylococcal endocarditis

Endocarditis can develop, particularly in people who use injection drugs and patients with prosthetic heart valves. Because intravascular catheter use and implantation of cardiac devices have increased, S. aureus has become a leading cause of bacterial endocarditis.

S. aureus endocarditis is an acute febrile illness often accompanied by visceral abscesses, embolic phenomena, pericarditis, subungual petechiae, subconjunctival hemorrhage, purpuric lesions, heart murmurs, perivalvular abscess, conduction defects, and heart failure secondary to cardiac valve damage.

Staphylococcal osteomyelitis

Osteomyelitis occurs more commonly in children, causing chills, fever, and pain over the involved bone. Subsequently, the overlying soft tissue becomes red and swollen. Articular infection may occur; it frequently results in effusion, suggesting septic arthritis rather than osteomyelitis. Most infections of the vertebrae and intervertebral disks in adults involve S. aureus.

Staphylococcal infectious arthritis

Joints typically become infected via hematogenous infection, but infection can also be caused by extension of a bone infection, trauma, or direct infection during joint surgery. Prosthetic joints are particularly prone to infection. Staphylococcal infection of a prosthetic joint in the months after implantation is usually acquired during surgery, whereas infections occurring more than 12 months after surgery are likely due to hematogenous spread. However, infections still may be secondary to organisms that were inadvertently introduced at the time of implantation and remained dormant and then became clinically evident several months later.

Staphylococcal toxic shock syndrome

Staphylococcal toxic shock syndrome may result from use of vaginal tampons or other devices or complicate any type of S. aureus infection (eg, postoperative wound infection, infection of a burn, skin infection). Although most cases have been due to methicillin-susceptible S. aureus (MSSA), cases due to MRSA are becoming more frequent.

Staphylococcal scalded skin syndrome

Staphylococcal scalded skin syndrome, which is caused by several toxins termed exfoliatins, is an exfoliative dermatitis of childhood characterized by large bullae and peeling of the upper layer of skin. Eventually, exfoliation occurs. Scalded skin syndrome most commonly occurs in infants and children < 5 years.

Staphylococcal Scalded Skin Syndrome (Infant)
Hide Details
Staphylococcal scalded skin syndrome is epidermolysis caused by a staphylococcal toxin. Findings include erythema with overlying desquamation in sheets, particularly in the intertriginous area of the groin and axillae. Often there is also perioral peeling.
Image courtesy of Thomas Habif, MD.

Staphylococcal food poisoning

Staphylococcal food poisoning is caused by ingesting a preformed heat-stable staphylococcal enterotoxin. Food can be contaminated by staphylococcal carriers or people with active skin infections. In food that is incompletely cooked or left at room temperature, staphylococci reproduce and elaborate enterotoxin. Many foods can serve as growth media, and, despite contamination, they have a normal taste and odor. Severe nausea and vomiting begin 2 to 8 hours after ingestion, typically followed by abdominal cramps and diarrhea. The attack is brief, often lasting < 12 hours.

Diagnosis of Staphylococcal Infections

  • Gram stain and culture

Diagnosis of staphylococcal infections is by Gram stain and culture of infected material.

Susceptibility tests should be done because methicillin-resistant organisms are now common and require alternative therapy.

When staphylococcal scalded skin syndrome is suspected, cultures should be obtained from blood, urine, the nasopharynx, the umbilicus, abnormal skin, or any suspected focus of infection; the intact bullae are sterile. Although the diagnosis is usually clinical, a biopsy of the affected skin may help confirm the diagnosis.

Staphylococcal food poisoning is usually suspected because of case clustering (eg, within a family, attendees of a social gathering, or customers of a restaurant). Confirmation (typically by the health department) entails isolating staphylococci from suspect food and sometimes testing for enterotoxins.

In osteomyelitis, x-ray changes may not be apparent for 10 to 14 days, and bone rarefaction and periosteal reaction may not be detected for even longer. Abnormalities in MRI, CT, or radionuclide bone scans are often apparent earlier. Bone biopsy (open or percutaneous) should be done for pathogen identification and susceptibility testing.

MRSA surveillance in health care institutions

Some institutions that have a high incidence of methicillin-resistant S. aureus (MRSA) nosocomial infections routinely screen admitted patients for MRSA (active surveillance) by using rapid laboratory techniques to evaluate nasal swab specimens. Some institutions screen only high-risk patients (eg, those who are admitted to the intensive care unit, who have had previous MRSA infection, or who are about to undergo vascular, orthopedic, or cardiac surgery).

Quick identification of MRSA does the following:

  • Allows carriers to be placed in contact isolation and, when preoperative antibiotic prophylaxis

  • Decreases the spread of MRSA

  • May decrease the incidence of nosocomial infections with MRSA

In patients with pneumonia, polymerase chain reaction (PCR) testing for MRSA colonization in the nares has been shown to have a negative predictive value of > 95% for MRSA lung infection and may therefore be useful in antibiotic management.

Treatment of Staphylococcal Infections

  • Local measures (eg, debridement, removal of catheters)

  • Antibiotics selected based on severity of infection and local resistance patterns

Management of staphylococcal infections includes abscess drainage, debridement of necrotic tissue, removal of foreign bodies (including intravascular catheters), and use of antibiotics (see table Antibiotic Treatment of Staphylococcal Infections in Adults).

Initial choice and dosage of antibiotics depend on

  • Infection site

  • Illness severity

  • Probability that resistant strains are involved

Thus, it is essential to know local resistance patterns for initial therapy (and ultimately, to know actual drug susceptibility).

Treatment of toxin-mediated staphylococcal disease (the most serious of which is toxic shock syndrome

Antibiotic resistance

Community-acquired strains

MRSAclindamycin resistance by strains inducibly resistant to erythromycin (laboratories may report these strains as D-test positive).

Vancomycinvancomycin minimum inhibitory concentration (MIC) of ≥ 1.5 mcg/mL.

Vancomycin-resistant S. aureus (VRSA; MIC ≥ 16 mcg/mL) and vancomycin-intermediate–susceptible S. aureus

Because incidence of MRSA has increased, initial empiric treatment for serious staphylococcal infections (particularly those that occur in a health care setting) should include an antibiotic with reliable activity against MRSA. Thus, appropriate antibiotics include the following:

  • For proven or suspected bloodstream infections,

  • For pneumonia,vancomycindaptomycin is not reliably active in the lungs)

Table Antibiotic Treatment of Staphylococcal Infections in Adults summarizes treatment options.

Table
Table

Prevention of Staphylococcal Infections

Aseptic precautions (eg, thoroughly washing hands between patient examinations, sterilizing shared equipment) help decrease spread in health care institutions.

Strict isolation procedures should be used for patients harboring resistant microbes until their infections have been cured. An asymptomatic nasal carrier of S. aureus does not need to be isolated unless the strain is MRSA or is the suspected source of an outbreak. The Centers for Disease Control and Prevention recommends placing patients who are colonized or infected with MRSA in private rooms and on contact precautions in inpatient acute care settings and using strict isolation procedures (see Strategies to Prevent Hospital-onset Staphylococcus aureus Bloodstream Infections in Acute Care Facilities.)

Multidisciplinary guidelines for antibiotic prophylaxis before certain types of surgery2).

Staphylococcal food poisoning can be prevented by appropriate food preparation. Patients with staphylococcal skin infections should not handle food, and food should be consumed immediately or refrigerated and not kept at room temperature.

Decolonization of MRSA carriers

The S. aureuschlorhexidine) or dilute bleach baths (about 5 mL/L) for 5 to 14 days.

Topical nasal mupirocin has been proved somewhat effective for reducing MRSA infection in hospitalized patients (eg, patients in intensive care units, those undergoing major surgeries). Although mupirocin1).

Prevention references

  1. 1. Huang SS, Singh R, McKinnell JA, et al: Decolonization to reduce postdischarge infection risk among MRSA carriers. N Engl J Med 380:638–650, 2019. doi: 10.1056/NEJMoa1716771

  2. 2. Bratzler DW, Dellinger EP, Olsen KM, et al: Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect (Larchmt) 14(1):73–156, 2013. doi: 10.1089/sur.2013.9999

Key Points

  • Staphylococcus aureus is the most dangerous staphylococcal species.

  • Most staphylococcal diseases involve direct tissue invasion and cause skin and soft-tissue infections, IV catheter infections, pneumonia, endocarditis, and osteomyelitis.

  • Some strains produce a toxin that can cause toxic shock syndrome, scalded skin syndrome, or food poisoning.

  • Antibiotic choice depends on source and location of infection and community or institutional resistance patterns.

quizzes_lightbulb_red
Test your KnowledgeTake a Quiz!
Download the free MSD Manual App iOS ANDROID
Download the free MSD Manual App iOS ANDROID
Download the free MSD Manual App iOS ANDROID